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Executive Summary 
 
The ACES (Autopoietic Cognitive Edge-cloud Services) project aims to develop a next-generation 
intelligent edge-cloud continuum, capable of self-management, adaptation, and autonomous 
decision-making in complex, distributed environments. Within this broader vision, Deliverable D4.5 
addresses one of the core technological pillars of ACES: the creation of distributed knowledge base 
and data management systems that can operate reliably, coherently, and adaptively across a highly 
heterogeneous and dynamic infrastructure. 

This deliverable explores how knowledge can be structured, distributed, and leveraged at the edge to 
support cognitive behaviour, such as local reasoning, anomaly detection, and self-optimization. 
Moving beyond traditional cloud paradigms, ACES promotes a decentralized, data-centric approach, 
where edge nodes are not merely consumers of instructions but intelligent agents that observe, 
reason, and act locally—while maintaining alignment with global goals. 
 
A key innovation presented in this document is the integration of Temporal Knowledge Graphs and 
semantic models, which allow services to represent evolving system states and causal dependencies 
over time. These representations underpin anomaly detection, root cause analysis, and service 
coordination, enabling the system to reason about time-sensitive relationships and to anticipate 
failure propagation in microservice-based environments. Machine learning and graph-based 
techniques are used in tandem to infer and interpret complex system dynamics in a scalable and 
explainable way. 

To orchestrate resources and services efficiently across the edge-cloud landscape, ACES introduces 
multi-agent models and decentralized optimization techniques. Swarm intelligence and learning-
based peer selection mechanisms are employed to allocate workloads based on local observations 
and partial knowledge, while preserving global performance and service-level guarantees. In this 
context, the deliverable demonstrates how local surrogate models and inverse-distance 
exploration strategies can be employed to tune system behaviour dynamically, without central 
coordination. 

Another foundational component of this deliverable is the distributed data management 
infrastructure. Rather than relying on centralized repositories, ACES deploys a hybrid architecture 
where telemetry, metadata, and control flows are processed locally, while global coordination is 
achieved through lightweight metadata exchange and policy-driven decisions. By embedding 
intelligence directly into the data layer—via metadata tags, policies, and cognitive agents—the 
system can respond autonomously to changes in load, failures, or network conditions, achieving a 
high degree of resilience and adaptivity. 

In summary, the Deliverable presents a coherent and integrated vision for enabling autopoietic 
intelligence in edge-cloud networks. It contributes essential architectural, algorithmic, and 
operational mechanisms that transform the edge from a passive layer into an active participant in the 
global system's intelligence. These contributions are central to ACES's ambition to realize distributed, 
explainable, and self-sustaining cognitive systems that can operate reliably under uncertainty, at 
scale, and in real-world industrial and societal contexts. 
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1 Introduction 
The present document focuses on the development of distributed knowledge base and data 
management systems within ACES. It consolidates the methodologies, technologies, and experiments 
that enable the system to observe, reason, and adapt to evolving conditions, while maintaining data 
locality, low-latency operations, and coordination across heterogeneous infrastructures. 
  
The document is structured as follows: 
  

• Section 2 outlines the key challenges in distributed knowledge and data management, such as 
data heterogeneity, semantic interoperability, scalability, and temporal reasoning, and 
introduces ACES strategies to address them. 
 

• Section 3 presents the design and implementation of Temporal Knowledge Graphs (TKGs) for 
anomaly detection and root cause analysis in microservice-based architectures, including 
machine learning and graph-based methods. 
 

• Section 4 describes a self-organizing local decision mechanism based on agent-based 
modelling and swarm intelligence, addressing adaptive scheduling and resource orchestration 
in edge environments. 
 

• Section 5 details a multi-agent AI algorithm for decentralized resource allocation using the D-
GLIS framework, which enables distributed hyperparameter tuning and system optimization. 
 

• Section 6 discusses the distributed data management layer, including operational principles, 
metadata-driven decisions, and integration with telemetry systems to support autonomous 
edge-cloud behaviours. 
 

• Section 7 provides the concluding remarks, summarizing the contributions and highlighting 
future directions. 
 

Together, these sections aim to demonstrate how ACES leverages cognitive frameworks, distributed 
intelligence, and advanced data handling to enable the emergence of self-managing, resilient edge-
cloud systems. 
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2 Challenges in Distributed Knowledge 
and Data Management 

In the agent-based modelling of an EMDC (see D4.1 on agent-based modelling for details), we face a 
set of challenges that need to be considered in the overall modelling process. 
 

2.1 Pool of Resources 
To begin with, together with the nodes in an EMDC, we consider a pool of resources that presents an 
innovation to the current definitions of the edge continuum. This means that besides the processing 
capabilities in a node (that is a constitution of multiple resources), single resources can be requested 
for pod processing. This pool of resources is part of the EMDC and can be consulted by the edge(-
cloud) management as requested. Such a pool mainly prevents resource limits, increased latencies, 
and stability of the performance of other pods, as their assigned resources are not tapped. Currently, 
the CXL is being implemented in CPUs (see, e.g., Intel, or AMD), in memory and storage (e.g., Samsung), 
and the PCIe switches are expected in 2026. Besides hardware development, the biggest challenge 
currently is how these pools of resources can be orchestrated, as there is no scheduling technique 
available to handle this complexity and dynamics in binding requested resources. 
 

2.2 Application Types 
For the different services, we can differ between the three application types that come with diverse 
requirements in their response time: 
 

1. The LRAs instantiate long-standing pods to enable iterative computations in memory or 
unceasing request-response. LRAs include processing frameworks (e.g., Storm, Flink, Kafka 
streams), latency-sensitive database applications (e.g., HBase and MongoDB), and data-
intensive in-memory computing frameworks (e.g., TensorFlow). 

2. Batch processing is typically used when you have a large amount of data that needs to be 
processed all at once, and when the results of that processing can be stored and used later. 
Data is typically processed on a schedule or at regular intervals. There are two types of batch 
processing: Regular returning requests, and opportunistic requests with little to no SLA. 

3. Stream processing also deals with large volumes of data, but the data needs to be processed 
in real time. Future workloads will become even more complex with LRAs, batches, and stream 
processes being interconnected. Therefore, it will be challenging to categorize an application 
and tune its agents accordingly. 

 

2.3 Relationships among Pods 
The demand swarm agents are related pod splits from a specific service. These pods can have several 
relations with each other. There can be different needs, e.g., that they need to be processed in parallel 
or that they depend on each other. Additionally, if one pod is too slow, the current system creates more 
pods to reach the given response times of the specific service s. Currently, these relationships are not 
used in the scheduler and orchestration optimization. For example, placing interacting services closer 
together can significantly enhance their performance, e.g.: i) if there are multiple services with 
microservices that frequently interact, it is advisable to locate the microservices of one service within 
the same region to improve performance; ii) for pods that are heavily dependent on a database, it is 
best to place them near the database to reduce latency and improve overall performance. 
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2.4 Additional Challenges and ACES Strategies for 
Distributed Knowledge and Data Management 

The ACES project approaches distributed knowledge and data management with a data-centric and 
cognitive-by-design methodology. Below is a breakdown of critical challenges and the mechanisms 
adopted in ACES to address them. 
 

2.4.1 Data Heterogeneity 
In distributed environments, data originates from diverse sources: IoT sensors, cloud nodes, edge 
services, often using incompatible formats, schemas, and models. 
ACES employs a graph-based data model aligned with NGSI-LD [1] to provide semantic structure 
across all telemetry data. Data from various storage systems: TimescaleDB (for time-series), Neo4j 
(for graphs), MinIO (for objects) is transformed into this unified semantic format, enabling 
interoperability and seamless integration across services and nodes. 
 

2.4.2  Semantic Interoperability 
Systems must align not only data formats but also the meaning behind data (e.g., context of metrics, 
alerts, or relationships). 
By using semantic enrichment via its NGSI-LD-compatible data model, ACES supports machine-
readable ontologies and context-aware relationships. NATS-based pipelines [2] transform raw 
telemetry into enriched knowledge, which agents then consume through the CF for inference, 
correlation, and action planning. 
 

2.4.3  Scalability 
Managing the growth of data sources, query load, and event streams without overwhelming the 
system. 
The architecture is modular and horizontally scalable, with NATS enabling scalable and decoupled 
ingestion of telemetry. Agents are distributed and operate locally, consuming only relevant data, which 
reduces central bottlenecks. Retention policies and ETL pipelines orchestrated by Prefect offload 
historical data to MinIO, ensuring scalability of live systems. 
 

2.4.4  Knowledge representation and reasoning 
Storing data is not enough, systems must interpret and reason over it to enable autonomous behaviour. 
The Cognitive Framework in ACES integrates telemetry, metadata, and graph-based knowledge 
representations. This allows for machine learning-based reasoning and inference of system states, 
such as detecting anomalies or predicting failures. Data is not passive since it's actively interpreted to 
influence orchestration decisions in real time. 
 

2.4.5  Data Governance and Ownership 
In collaborative and multi-stakeholder environments, it is critical to manage data provenance, 
ownership, and lifecycle transparently. 
ACES uses a metadata-rich governance model. Every data item includes tags for origin, type, usage 
context, and versioning, enabling cognitive agents to enforce retention policies, trigger ETL workflows 
via Prefect, and track data lineage across services. The separation of payloads and metadata supports 
global coordination without compromising edge autonomy. 
 

2.4.6  Temporal Knowledge graph representation 
While a knowledge graph (KG), which we explained in D3.3, concentrates on static relationships and 
entities without explicit time tracking, a temporal knowledge graph (TKG) captures and portrays data 
with a time dimension, demonstrating how entities and relationships change over time. TKGs are one 
of the approaches used in ACES to model microservice interactions and resource usage for anomaly 
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detection and root cause analysis; however, they face several significant challenges as well. First, 
integrating many data sources, including service traces and resource usage metrics and logs, into a 
single temporal graph representation is more difficult due to the microservice environments' dynamic 
and heterogeneous nature. Second, autoscaling and frequent deployments cause the topology to 
change quickly, which creates difficult problems for graph generation and updates. Furthermore, to 
guarantee significant temporal reasoning, temporal granularity and synchronization need to be well-
controlled. When it comes to learning, GNNs frequently face challenges with generalization across 
system versions, scalability, and label availability. Effective root cause analysis still faces significant 
challenges in separating causal linkages from correlations and guaranteeing explainability. Lastly, 
thorough assessment and benchmarking of suggested approaches are severely constrained by the 
absence of consistent datasets and ground truth annotations. 
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3 Temporal Knowledge graphs for 
anomaly detection and root cause 
analysis 

3.1 Temporal Knowledge Graphs for ACES 
A KG is an organized depiction of information regarding entities and their relationships. These graphs 
are inherently static, indicating they presume facts are perpetually accurate and do not consider when 
these facts hold validity. Conversely, a TKG enhances this model by adding temporal details, doting 
every fact with a timestamp. This enables TKGs to reflect the dynamic progression of knowledge over 
time, making them vital for applications where the timing and order of events are crucial, such as event 
prediction, anomaly identification, and root cause exploration in complex systems like microservices. 
While traditional KGs are good at representing consistent global information, TKGs are better at 
analysing historical contexts, temporal trends, and predicting future events based on past behaviour.  
 
In recent years, Kubernetes has become the top orchestration technology for containerized 
microservice application deployment and management. These applications are defined by their 
distributed characteristics, where microservices interact with one another across networks, frequently 
exhibiting different degrees of resource usage. Kubernetes [3] provides robust tools for automating 
the deployment and scaling of microservices, but it also brings challenges related to reliability and fault 
tolerance. Failures in microservice applications can stem from multiple sources, including resource 
depletion, network disruptions, or application failures. If not managed effectively, these failures can 
diminish service quality and result in considerable operational costs. For instance, when pods are 
overloaded or the network is congested, there may be an increase in latency between microservices, 
which can cause slower response times and delayed communication. Service continuity is disrupted, 
and overall application performance is degraded by frequent pod restarts and resource depletion, such 
as CPU throttling or memory exhaustion. Anticipating failures in these dynamic settings is a challenging 
task, as the relationships among microservices and their resource consumption are always evolving. A 
promising method for modeling these systems involves using knowledge graphs, especially TKGs, 
which represent evolving relationships among entities over time. In the realm of Kubernetes, TKGs can 
signify the interaction between pods, their utilization of resources, and their generated events. 
Examining these graphs could potentially reveal patterns or irregularities that occur before failures. 
 
In the context of the ACES project, we consider a distributed system that continuously monitors its own 
performance. A TKG can represent internal service states, interdependencies, configuration changes, 
and observed anomalies over time. When a service degrades, the system can query the TKG to infer 
probable causes and trigger self-healing actions, effectively making the system observe, reason, and 
reorganize itself, which leads to the intended autopoietic behaviour in this project. 
 

3.2 Microservice application deployment 
To evaluate anomaly detection methods in a realistic cloud-native environment, we utilized the Online 
Boutique application, which is an open-source microservice-based e-commerce platform [4] 
developed by Google as a reference workload for Kubernetes environments. This application serves as 
a representative benchmark for modern distributed systems, exhibiting many characteristics typical of 
production microservices architectures, such as service decomposition, inter-service communication, 
and dynamic scaling. 
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The Online Boutique consists of over ten loosely coupled services, as shown in Figure 1, which is an 
example of TKG showing the different microservices of this application. Each microservice is 
responsible for a specific business function, such as product catalog management, cart handling, 
payment processing, shipping, currency conversion, recommendation generation, and user 
authentication. These microservices are usually installed in containers inside a Kubernetes cluster and 
communicate using the HTTP and gRPC protocols. Service discovery, load balancing, and observability 
through telemetry data such as logs, metrics, and traces are examples of real-world cloud-native 
techniques that are reflected in the architecture.  

This application provides a rich testbed for experimenting with anomaly injection and detection. Its 
modular design enables targeted injection of faults such as CPU saturation, memory leaks, network 
latency, or packet loss at the level of individual services. In addition, the availability of performance 
metrics and service-to-service communication data allows for detailed monitoring and root cause 
analysis. 

By leveraging the Online Boutique, we ensure that our evaluation is grounded in a realistic operational 
setting, offering a practical context for testing the effectiveness of machine learning-based anomaly 
detection techniques in cloud-native environments. 

 
 

Figure 1: Online boutique application example of TKG 
 

3.3 Faults Injection 
An automated framework was developed to streamline application testing and fault injection. 

This framework is a specialized service designed to simulate and automate diverse failure scenarios 
within a controlled environment. It offers the possibility to inject targeted faults as described in Table 
1 such as CPU hog, memory leak, network latency/loss, http delays and pods crashes while allowing 
configuration of parameters like duration, intensity, and affected services. The component logs detailed 
information about each injected failure to facilitate correlation with observed system behaviour.  
Seamlessly integrating with Kubernetes and Istio APIs [5], it can impose failures at various levels of the 
stack. Its implementation harnesses Kubernetes resource controls and Istio’s traffic management to 
emulate realistic failure conditions without compromising overall system stability. 

 

https://github.com/GoogleCloudPlatform/microservices-demo
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Fault Type Effect Tools / Cmds Typical Usage 

CPU hog Overloads CPU, causing 
performance degradation 

stress-ng Test system performance   
under heavy computation 

Memory leak Simulates memory exhaustion 
and potential crashes 

stress-ng Test system stability under 
high memory usage 

Network loss Simulates packet loss in the 
network, causing connectivity 
issues 

tc (traffic 
control) 

Test system resilience to      
network issues 

Network Delay Introduces latency in network 
communication, simulating   
slow network conditions 

tc (traffic 
control) 

Test system behaviour under 
network latency 

 
HTTP delay 

Simulates slow HTTP 
responses (like a failing 
backend) 

Istio Test application resilience 
(e.g., slow HTTP responses). 
 

 
Pod 
crash/unavaila
bility 

Introducing faults 
that cause pods to crash (e.g., 
an unhandled exception 
triggered by specific 
input, extreme load) 

stress-ng/ 
kubectl delete 

Tests service availability 

Table 1:  Injected failure types  
 
This framework typically performs the following functions: 
 

• Interact with the Kubernetes cluster (via the Python Kubernetes client library) to identify 
target pods for fault injection. 
 

• Execute commands within the target pods using ‘kubectl exec‘ to trigger ‘stress-ng‘ or ‘tc‘ 
tools.  
For example, to inject CPU stress into a pod: 
kubectl exec <pod-name> -n <namespace> -- stress-ng --cpu 1 --cpu-load 80 –timeout  
60s 
To introduce network latency to a pod’s network interface (e.g., ‘eth0‘): 
kubectl exec <pod-name> -n <namespace> -- tc qdisc add dev eth0 root netem delay 
100ms 
 

• Monitor the application’s behaviour during and after the fault injection, possibly by querying 
Prometheus or observing application logs. 
 

• Collect data and construct labelled datasets to be used for ML models. 
 

We show in Figure 2 an example of a fault injection scenario, where all parameters were specified, such 
as the namespace, the number of users to interact with the application simulating loads, failure type 
with its options, and durations of the experiment and the failure. 
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Figure 2: Fault injection scenario example 

 
We show in Figure 3 and Figure 4 below examples of failure results. We notice a change in CPU 
utilization from 35m to 213m at 21:11:35 after injecting a CPU failure on the microservice Adservice. 
 

 

 
Figure 3:  Metric results after CPU Fault Injection on Adservice 

 

 
Figure 4: Result graph of CPU Fault Injection on Adservice 

 

3.4 Data Collection and aggregation 
To support the detection and classification of anomalies in microservice architectures, we collect two 
types of data: resource consumption and microservice communications.  

3.4.1 Resource consumption data 
After performing several experiments (more than 100 experiments: 4 fault types x 5 target MS x 4 repeat times changing 
parameters) of fault injection and creating datasets of normal and abnormal data of different types, we automate 
structuring and annotation of experimental data. This process enables automated preparation of datasets across 
multiple failure scenarios and ensures consistency throughout the processing pipeline. The key steps of this automated 
procedure are as follows: 

• Automated Traversal of Experiment Subdirectories and Failure Type Identification: The 
process systematically navigates through experimental subfolders and infers the failure type 
based on filename suffixes (e.g., _cpu, _mem, _loss, _delay), corresponding respectively to CPU 
hog, memory leak, packet loss, and packet delay scenarios. 
 

• Data Ingestion and Structuring: It automatically loads the raw resource and communication 
logs for each pod, originally stored in dedicated files, and applies cleaning and formatting 
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operations to produce structured datasets suitable for analysis. 
 

• Temporal Annotation of Abnormality Classes: Each data entry is labelled either as Normal or 
assigned a specific anomaly class. This labelling is based on a fixed injection timeline, where 
anomalies are assumed to begin three minutes after the start of each experiment. 
 

• Merging of Experiment Datasets: Data from all individual experiments are consolidated into a 
unified dataset, enabling holistic analysis across all failure types. 
 

• Chronological Sorting and Instance Name Standardization: To ensure temporal consistency 
and simplify further processing, all records are chronologically ordered, and instance names 
are standardized. 

• Final Export for Downstream Tasks: The structured and annotated datasets are exported for 
subsequent use in model training, evaluation, and visualization, including resource metrics and 
inter-pod communication data. 

This preprocessing pipeline provides a scalable and reproducible foundation for the study of anomaly 
detection in microservice environments, enabling the use of labelled, temporally aligned datasets 
across a variety of failure scenarios. 

3.4.2  Communication data 
The communication between microservices was analysed to differentiate between successful and 
failed interactions. This distinction was made using HTTP and gRPC response codes, allowing for a 
clearer understanding of system behaviour under both normal and faulty conditions. The data 
processing workflow involved the following key steps: 

• Classification of Communication Outcomes: Microservice interactions were labelled as 
either success or error based on standard response codes, with HTTP 200 and corresponding 
gRPC statuses used to identify successful communications. 
 

• Feature Engineering: Several derived metrics were computed to capture dynamic system 
behaviour, including the number of new requests, the volume of data exchanged, and 
communication latency calculated as the time difference between successive requests. 
 

• Aggregation of Temporal Metrics: After classification and metric derivation, the data was 
aggregated to extract KPIs over time. These indicators are essential for evaluating the 
reliability and efficiency of microservice-to-microservice interactions. 

The computed KPIs include: 

• Success and Error Rates: reflecting the proportion of failed versus successful 
communications. 

• Average latency: measuring the overall responsiveness of the system across all requests. 
• Throughput:  representing the amount of data transmitted per unit time. 
• Request rate:  indicating the number of microservice calls processed per second. 

These metrics were calculated across multiple time resolutions (e.g., 15 seconds, 30 seconds, 1 
minute) to support detailed performance monitoring over short-, medium-, and long-term intervals. 
The resulting dataset serves as a foundation for training and evaluating machine learning models in 
anomaly detection. 
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3.5 ML-based Anomaly Detection 
We aim to detect and classify the various types of anomalies stated in section 3.2 occurring within 
microservices by leveraging traditional machine learning techniques. Microservice architectures, 
while offering scalability and flexibility, introduce complexity that makes anomaly detection a critical 
challenge. To address this, we extract relevant features related to resource consumption, such as 

• cpu_usage_seconds_total:  Measures the total cumulative CPU time consumed by a container in 
seconds 

• container_cpu_system_seconds_total:  Indicates the total time the container has spent executing 
system (kernel) level operations 

• container_memory_working_set_bytes:  Represents the amount of memory in active use by the 
container (excluding cached pages that can be evicted) 

• container_memory_rss:   Shows the portion of memory occupied by a container that cannot be 
swapped out (resident set size); useful for understanding real physical memory usage. 

• container_network_receive_bytes_total:   Tracks the total number of bytes received over the 
network by a container; helps monitor incoming traffic volume and potential bottlenecks. 

• container_network_transmit_packets_total:  Counts the total number of packets sent over the 
network by the container; indicates outbound communication frequency and traffic patterns. 
 

We apply a series of supervised learning models to not only identify the presence of anomalies but also 
predict their specific types. This approach provides a foundation for proactive monitoring and 
automated root cause analysis in distributed environment. To do that, we proceed by doing the 
following steps:  

• Data Preprocessing: Encoding of categorical variables and imputation of missing values. 
• Normalization: StandardScaler is used to ensure balance among variables. 
• Dataset Splitting: 80% for training and 20% for testing, with stratification based on classes. 
• Tested Models: Random Forest, Decision Tree, SVM, KNN, and Naive Bayes. 

 
 

Figure 5: Results of classification of the Anomalies using ML algorithms 
 
Results shown in Figure 5 above depict high accuracy for detecting anomalies (over 95%) for most of 
the used algorithms except naive Bayes. Random Forest gave the highest accuracy; therefore, it was 
chosen for the detection task. 
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3.6  GNN-based communication anomaly detection 
To detect anomalies in microservice communications, a Graph Autoencoder (GAE) model was 
employed. This model learns a latent representation of the communication graph, allowing it to identify 
abnormal interactions between services. The architecture includes: 

• A GCN encoder that captures both node features (e.g., latency, error rate) and graph structure. 
• A decoder that reconstructs graph edges from the encoded node embeddings. 

The model is trained using binary cross-entropy loss to reconstruct edges accurately. Anomalies are 
detected based on low reconstruction probabilities—i.e., edges that the model fails to predict well 
are flagged as abnormal. 

• Anomaly scores are computed as 1 - reconstruction probability, with higher scores indicating 
more suspicious behaviour. 

• Training parameters: Optimizer: Adam, Learning rate: 0.0005, Epochs: 200. 

The resulting anomaly scores can be used for alerting, dashboard integration, or graph-based system 
visualization, providing a powerful unsupervised method for detecting communication failures in 
microservices. 

3.7  Temporal Knowledge graphs 
To enhance interpretability and support root cause analysis in microservice architectures, we leverage 
TKG visualizations that integrate traces of millisecond communication and resources metrics insights 
from anomaly detection models over time. The knowledge graph evolves as the system operates, 
representing both microservices and workers nodes (as nodes) and microservices communications and 
their deployment on worker nodes (as directed edges), enriched with temporal and behavioural 
annotations. Two detection layers are visualized concurrently: 

• Edge-level anomalies, derived from a GAE, identify abnormal service interactions based on 
deviations in graph structure. 

• Node-level states, predicted by a Random Forest classifier, categorize each microservice's 
operational condition (e.g., CPU overload, memory leak). 

3.7.1 Visual Encoding and Metrics 
The TKG is enhanced with color-coded cues: 

• Edges: Green (normal), Blue (degraded), Red (anomalous) based on GAE anomaly scores. 
• Nodes: Coloured or shaped based on the fault class or healthy status from the classifier. 

Each node is further enriched with real-time metrics (CPU, memory, network), linking model outputs to 
observable system behaviour. 

3.7.2 Temporal Analysis 
An interactive timeline facilitates dynamic exploration of the system’s state across time, enabling: 

• Tracking of anomaly onset and propagation, 
• Temporal correlation between service failures and degraded communications, 
• Analysis of fault persistence or resolution. 
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This TKG-based visualization, as shown in Figure 6, provides a comprehensive, time-aware perspective 
on microservice health, combining graph-structured anomaly detection with supervised fault 
classification to support informed monitoring and diagnosis. 

 

Figure 6: Example of TKG visualization 
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4 Self-Organizing Local Decision 
Mechanism 

The work carried out in ACES introduces self-organizing local decision mechanisms to address the 
inherent uncertainty in resource management for mixed workload types and heterogeneous pod 
requirements. We model edge infrastructure as a multi-agent system comprising: 
 

• Rigid pods with strict CPU/RAM requirements and fixed execution windows 
• Elastic pods exploiting residual resources through flexible scheduling 
• Worker nodes managing localized resource allocation 

 
Our novel contribution lies in a swarm intelligence-inspired algorithm that: 

1. Maintains coarse-grained resource footprints in temporal buckets 
2. Implements probabilistic selection of compatible rigid pods 
3. Enables decentralized coordination through uniform sampling 
4. Evaluates NN-based approaches for deployed pod characterization 

 
 

4.1 Related Work to the Self-Organizing Approach 
 
Containers represent portable, lightweight units that encapsulate an application and all its 
dependencies, enabling deployment across diverse environments. Containerization technology has 
become fundamental in cloud-native architectures, offering flexibility for continuous integration and 
continuous deployment, regardless of the underlying infrastructure. This approach also enhances 
resource management in cloud environments, as containers require more fine-grained resource 
allocation compared to earlier technologies based on virtual machines. Container orchestration 
frameworks such as Kubernetes automate the deployment and management of containers at scale [6]. 
Within Kubernetes, which is among the most widely adopted orchestration frameworks for edge 
computing, the pod serves as the smallest deployable unit and can host one or more containers. At the 
core of Kubernetes lies its scheduling algorithm, responsible for assigning incoming pods to edge nodes 
based on required resources (such as CPU and RAM), QoS needs like response time, and system 
objectives including load balancing, resource utilization, and reliability. Intelligent scheduling algorithms 
are crucial for improving resource utilization within each cluster [7]. However, the default rule-based 
scheduling mechanism often falls short in assigning resources efficiently. When the scheduler relies on 
user-specified resource requirements, significant resource waste can occur, as applications tend to 
overestimate their needs. The conservative scheduler allocates resources according to each pod’s 
declared demand to ensure QoS, but empirical studies in both Google™ and private clouds have 
revealed substantial CPU and RAM slack resources [8], [9]. This waste arises from improper 
scheduling-either by assigning tasks to unsuitable workers or when tasks underutilize their allocated 
resources. 
 
To address this, schedulers must consider application QoS requirements, typically reflected in resource 
demand. Analysis of Alibaba™ cloud server traces in [10] highlights that schedulers handle two main 
classes of applications: LC and batch processing. Co-locating these application types introduces 
additional flexibility to enhance resource utilization. 
 
Resource waste due to Kubernetes scheduling becomes even more pronounced in edge computing, 
where environments are more dynamic and system loads can be heavy [11]. Edge clusters often handle 
a greater proportion of LC workloads and operate with more limited resources compared to the cloud. 
Given these challenges, resource utilization can be improved by more accurately estimating pod 
resource demands and worker availability, as well as through strategic resource oversubscription. The 
former approach leverages advanced machine learning tools to analyse historical utilization data, 
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enabling more precise resource limits than those set manually by users. Additionally, inferring pod 
arrival patterns-such as periodic request trends-can further optimize scheduling decisions [12]. The 
latter approach involves deliberately oversubscribing pods beyond worker capacity to maximize 
resource use [13]. However, the main challenge here is the careful co-location of LC and batch 
processing applications, as improper oversubscription can negatively impact the QoS for latency-
critical workloads [10]. 
 
Both strategies face difficulties in highly dynamic edge environments, where accurately predicting 
workload demands and meeting application delay requirements is increasingly complex. In this paper, 
we propose a bottom-up resource allocation strategy: first, allocate resources to strict-demand (rigid) 
pods, then exploit any slack resources to serve elastic pods that can tolerate greater delays. 
In the Kubernetes ecosystem, this method aligns with vertical autoscaling, which complements the 
more common horizontal autoscaling feature. While horizontal autoscaling adjusts the number of pod 
replicas to respond to changing workloads, vertical autoscaling fine-tunes the resource allocation for 
each individual pod [8]. 
 

4.2 System Model 
We consider a general architecture for a distributed EMDC, composed of multiple independently 
managed clusters (see Figure 7). Each cluster is overseen by a cluster master agent, responsible for 
managing resource allocation and utilization within the cluster, while also cooperating with other 
clusters in a self-organizing fashion. Pods are submitted to the cluster master agent based on factors 
such as location and user preferences and are placed in the master’s queue. The master agent can 
either assign a pod to a worker agent within the same cluster or, if necessary and permitted by the 
pod’s attributes, transfer it to a peer cluster. Peer clusters are trusted, geographically proximate, and 
accessible via low-latency communication links. In this work, we focus exclusively on intra-cluster 
resource assignment for pods, and do not address inter-cluster orchestration. 
 
 

Figure 7: Schematic of a self-organized system of edge micro data center to orchestrate resource utilization: 
pods are submitted to each cluster’s master, which may be forwarded to the same cluster worker agent or 

transferred to another cluster. The worker of each cluster manages the whole cluster resource pool and monitors 
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and updates the resource slack of current deployed rigid pods in the state table. Elastic pods may be assigned to 
a currently deployed rigid pod to utilize the slack resources. 

 
Within each cluster, multiple worker agents are present, each equipped with a defined amount of CPU 
and RAM resources. While our model and solution primarily focus on these two resource dimensions, 
they can be extended to include additional resources such as storage and GPU units. A worker agent 
is responsible for accepting and executing pods assigned by the cluster master agent. 
 
For simplicity, we assume that all available resources within a cluster are managed collectively by a 
virtual single worker, allowing us to focus on optimizing intra-cluster resource utilization. The worker 
continuously monitors the resource usage and slack of currently deployed pods, maintaining and 
updating a state table to reflect the current allocation. 
Each worker agent has a specific CPU and RAM capacity, denoted as Wcap=(CPUcap,RAMcap). In our 
setup, we assume Wcap=(512,512) units. 
We distinguish between two types of pods: rigid pods and elastic pods. Rigid pods have strict execution 
time requirements and are considered unsatisfied if their queuing time exceeds a predefined threshold. 
 
Also, rigid pods may overestimate their resource demands, which incurs resource slack after 
deployment. Elastic pods, on the other hand, could tolerate a higher queuing delay before serving; the 
queuing delay tolerance is greater than rigid pods and does not overestimate their needs. The CPU and 
RAM demand and slack of each pod are denoted by a tuple D = (CPU demand,RAM demand) and S = 
(CPU slack,RAM slack) noting that the slack values for elastics pods are zeros. Each submitted pod’s 
requested demand and possible slack follow a stochastic distribution with expectations E[D] and E[S]. 
 
An example with three pod profiles reflecting different types of applications can be seen in Figure 8.  

.  
 

Figure 8: Pod profiles 
 
 

4.3 Self-organized Solution Approach in the Emergent 
Scheduler 

We model the system as a multi-agent environment comprising a master agent, a worker agent, and a 
sequence of arriving pod agents. Each agent possesses distinct attributes and operates according to 
its role at each step of the process. Initially, the system instantiates the master and worker agents. 
During each simulation step, the system scheduler invokes the step function for all agents and, based 
on a predefined schedule, may introduce a new pod agent into the system. The inter-arrival times for 
pods are generated according to an exponential distribution with parameter 𝜆. The scheduler is 
responsible for tracking which pods are satisfied or unsatisfied, and it removes completed pods from 
the system as they finish execution. 
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4.3.1  Pod Agent Behaviour 
Each pod agent is characterized by its type (either elastic or rigid), its resource demand, required 
execution steps, maximum acceptable queuing time, and any potential slack. Pods are placed in the 
master agent’s queues-separated into rigid and elastic queues-and are then offered to the worker 
agent. When a pod is accepted by the worker, it becomes a deployed pod. 
At each time step, a pod agent either waits in the appropriate master queue, decreases its remaining 
execution time if it is already deployed, or completes its execution. Upon completion, the system 
determines whether the pod’s requirements have been satisfied. The system then releases the 
resources allocated to the pod in the worker agent and removes the pod from further scheduling. 
 

4.3.2  Worker Agent Behaviour 
The worker agent is responsible for monitoring CPU and RAM assignments and utilization at each time 
step. Its primary function is to accept or decline pods offered by the master agent, with its behaviour 
differing based on whether the pod is rigid or elastic. 
 
Rigid Pods: 
When offered a rigid pod, the worker simply checks if the pod’s CPU and RAM demands can be met 
with the currently available resources. If sufficient resources are available, the worker accepts the pod, 
updates the resource assignment and utilization status, and proceeds with deployment. If not, the 
worker sends a decline message back to the master. 
 
Elastic Pods: 
For elastic pods, the worker selects a peer pod from the currently deployed pods using a specified 
selection algorithm. It then checks whether the chosen peer pod has enough slack resources (i.e., 
unused CPU/RAM) to accommodate the elastic pod’s request. If the slack is sufficient, the worker 
assigns these resources to the elastic pod, thus improving overall resource utilization. If not, the worker 
attempts to accept the elastic pod as if it were a rigid pod. If this also fails, the worker declines the pod 
and notifies the master. 
We assume that each peer pod can host only one elastic pod. Therefore, it is crucial to select the peer 
with slack resources that most closely match the elastic pod’s CPU and RAM requirements. The main 
challenge lies in efficiently selecting the appropriate peer pod, especially given the scalability concerns 
and the dynamic nature of slack resources among deployed rigid pods. Exhaustively searching for the 
best match among all deployed pods is impractical. To address this, we implement three different 
algorithms for peer selection. 
 
4.3.2.1  Random Selection 
In this approach, the worker agent randomly and uniformly selects one of the currently deployed pods 
and checks if it can accommodate the elastic pod. While this algorithm is highly scalable due to its 
simplicity, it often fails to find an optimal match for the elastic pod’s resource requirements. 
 
4.3.2.2  Best Match 
Serving as a benchmark, the best match algorithm exhaustively evaluates all currently deployed pods, 
calculating a matching score for each candidate that has sufficient resources. The dis-matching score 
is defined as the sum of the absolute differences in CPU and RAM between the elastic pod and the 
candidate pod. In the event of a tie, the candidate whose remaining execution steps most closely match 
the elastic pod’s required execution steps is chosen. This dual-criteria approach aims to preserve pods 
with higher slack for future requests; while also prioritizing candidates whose slack most closely fits 
the elastic pod’s needs. Ideally, the best match is a rigid pod with slack resources exactly matching the 
elastic pod’s demand and whose remaining execution time aligns with the elastic pod’s required 
duration. Importantly, if the selected host pod remains in the system after the elastic pod completes, it 
cannot share its slack resources with other pods. 
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4.3.2.3 ABC-based Bottom-up Resource Orchestration 
Our proposed algorithm is inspired by the artificial bee colony algorithm, a swarm intelligence technique 
originally introduced by Karaboga . In this agent-based approach, pods are analogous to bees 
searching for food sources-that is, available resources. Each rigid pod (bee) monitors its available slack 
and updates its “food quality” for incoming elastic pods. The worker agent maintains a compact lookup 
table that groups currently deployed pods into buckets based on their slack resources. We define two 
levels for both CPU and RAM slack (small and large), resulting in four possible buckets: LL, LH, HL, and 
HH (e.g., LL represents pods with low CPU and low RAM slack). Pods are assigned to these buckets 
according to their observed slack, and may be reassigned as their slack changes, although this dynamic 
reassignment is not considered in this version. 
 
When an elastic pod arrives, the worker selects the appropriate bucket based on the pod’s resource 
demand and then randomly chooses a peer pod from that bucket. This method combines the scalability 
of random selection with the advantage of utilizing prior knowledge about the slack resources of rigid 
pods, thereby improving the likelihood of a suitable match while maintaining efficiency. 
 

4.3.3  Master Agent Behaviour 
The master agent is responsible for maintaining and updating both the rigid and elastic pod queues. At 
each time step, the master prioritizes serving rigid pods, processing as many as possible. It does this 
by repeatedly fetching rigid pods from the rigid queue and offering them to the worker agent until a 
decline message is received. Once no more rigid pods can be served, the master turns its attention to 
the elastic queue. 
For elastic pods, the master fetches the pod at the front of the queue and offers it to the worker as an 
elastic pod. If the worker declines the elastic pod, the master may attempt to serve it as a rigid pod 
with probability  
Γ. . This means that, on average, every 1/Γ   rounds, the master gives elastic pods the opportunity to 
use raw resources as if they were rigid pods. The parameter Γ   serves as a control to balance the 
satisfaction rates between rigid and elastic pods. Our results show that with appropriate tuning of Γ  , 
the satisfaction rate for elastic pods can be improved without negatively impacting the satisfaction rate 
of rigid pods. 
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Figure 9: Pseudocode of the master agent behaviour 

 

4.4 NN-based Peer Selection 
Recent advances in machine learning have significantly improved resource allocation in edge 
computing, challenging the effectiveness of traditional centralized strategies. Building on this progress, 
our work enhances the bottom-up framework by introducing a neural network-based peer selection 
mechanism. Specifically, we employ a two-hidden-layer MLP trained on data generated by the best-
performing algorithm from Section 4.3. This intelligent peer selection replaces the previous random 
approach, enabling more effective resource allocation while preserving the decentralized nature of the 
system. 
 
Our research demonstrates that this integration not only boosts scheduling efficiency but also 
maintains the agility and scalability essential for edge environments. By combining ABM with machine 
learning, we create a more adaptive edge orchestration system.  This fusion of learning-based 
techniques with ABM bridges the gap between theoretical scheduling strategies and practical 
deployment, marking a significant step forward in adaptive and efficient edge resource management. 
 

4.4.1  Methodology 
The original bottom-up resource orchestration framework from Section 4.3 offers a computationally 
efficient solution for resource allocation in edge environments. In this framework, the edge node 
categorizes deployed rigid pods into buckets based on their available slack resources. Specifically, 
when considering CPU and memory slack, four buckets are defined: (LL), (LH), (HL), and (HH), where 
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L and H denote low and high slack, respectively. The node maintains a lookup table for these buckets, 
each containing the corresponding deployed pods. 
 
When an elastic pod arrives, the system selects the appropriate bucket based on the pod’s resource 
demand and then chooses a peer rigid pod uniformly at random from that bucket. This method is highly 
scalable and leverages initial slack estimates for more informed assignments. However, while 
computationally lightweight, the random selection process does not fully exploit the potential for near-
optimal resource allocation decisions. 
To address this limitation, our work enhances the resource allocation strategy by integrating a NN-
based peer selection mechanism. The NN model is trained on a dataset generated by the Best 
algorithm, which computes the optimal mapping of elastic pods to rigid peers using complete system 
information. 
 
 
The Best algorithm creates training data by evaluating the fitness of all potential peer pods for each 
incoming elastic pod. This exhaustive approach is computationally intensive, as it scans the entire list 
of deployed rigid pods to identify the optimal match. The fitness evaluation considers factors such as 
resource compatibility and execution time alignment, ensuring that the training data reflects the most 
effective allocation decisions. 
 
Resource Match (f1): This metric quantifies the difference between the slack resources available in a 
deployed rigid pod and the resource demand vector of the incoming elastic pod. 
 
Temporal Match (f2): This metric measures the difference between the remaining execution steps of 
the deployed rigid pod t_exer and the required execution steps of the elastic pod t_exee. 
Together, these metrics provide a comprehensive assessment of the suitability of each peer rigid pod 
for hosting an elastic pod. The training dataset incorporates features such as the demand vector of the 
incoming elastic pod, the slack resources of each deployed rigid pod, and the computed fitness scores 
(f1, f2) for every rigid-elastic pod pair. The pod arrival rate, denoted by 𝜆	, is varied to evaluate system 
performance under both light and heavy load conditions. 
 
4.4.1.1 Neural Network Training 
For peer selection, we employ a MLP model with two hidden layers containing 64 and 32 neurons, 
respectively. The model utilizes the ReLU activation function and is trained using MSE as the loss 
function. Training is performed on a normalized dataset with the following features: 

• CPU and memory demand of the incoming elastic pod 
• Slack resources of deployed rigid pods 
• Execution steps required by the elastic pod and remaining steps for each deployed rigid pod 

The MLP’s output predicts the fitness scores (f1, f2) for each elastic–rigid pod pair, enabling more 
informed and effective resource allocation decisions. 
 
4.4.1.2 Peer Selection Process 
The peer selection procedure is outlined in Figure 10. During runtime, the trained MLP model (referred 
to as nn_model) predicts the fitness scores of all potential peer pods (candidate peers) for each 
incoming elastic pod (new_pod). The rigid peer pod with the lowest predicted f1 score is chosen as 
the best match. If multiple candidates have similar f1 scores, both f1 and f2 are considered to make 
the final selection, ensuring an optimal pairing. 
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Figure 10: Pseudocode for the peer selection procedure 

 
 

4.5  Results 
We implement the system simulation as a multi-agent environment using the MESA library in Python. 
Over the course of 12000 time steps, we monitor key metrics such as worker CPU/RAM utilization and 
the lengths of the master’s queues. Our initial analysis focuses on the dynamics of the master’s queue 
lengths under varying traffic intensities. To classify resource levels, we use: i) a threshold of 5 units for 
both CPU and RAM to distinguish between low and high resource clusters, and ii) the proposed NN-
based peer selection mechanism. 
 
Figure 11-(a) illustrates that under light load conditions (𝜆 ≈ 0.5), queue lengths fluctuate but do not 
accumulate over time, and worker utilization remains similar across all algorithms since available 
resources exceed demand. As 𝜆 increases and demand surpasses available resources, the system 
enters a heavily loaded regime. In Figure 11-(b) (𝜆 ≈ 0.8), queue lengths consistently build up, and 
resource utilization becomes dependent on each algorithm’s ability to efficiently exploit slack 
resources. 
Figure 12 presents the CPU/RAM utilization and the satisfaction rates for both rigid and elastic pods, 
which serve as key performance indicators. When 𝜆 is below a critical threshold (𝜆!), the satisfaction 
rate approaches one. Beyond this threshold, satisfaction rates are determined by how effectively each 
algorithm leverages slack resources. The proposed bottom-up algorithm improves overall utilization 
and enhances pod satisfaction rates, performing between the random and best-match strategies as 
anticipated.  
It is important to highlight that the inherent randomness of the bottom-up approach makes it robust 

against inaccuracies in slack resource estimation or threshold settings. 
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Figure 11: Queue length dynamics for (a) 𝜆 = 0.5, lightly loaded regime, (b) 𝜆 = 0.7, heavy loaded regime. The 

thin curves show the instantaneous queue length, and the solid curves show the running average 
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Figure 12: The utilization and satisfaction ratio against different values of 𝜆 where the cluster label of 20% of 
deployed pods is selected randomly 
 
The performance of the Bottom-up with NN algorithm is compared against the three baseline 
algorithms described before. As illustrated in Figure 13, the Best algorithm consistently outperforms 
the others in both resource utilization and satisfaction rate. 
Simulation results indicate that the NN-basic algorithm, when trained on a limited dataset of 2000 
samples, performs worse than random peer selection. However, increasing the training set to 12000 
data points enables the NN-basic algorithm to achieve results comparable to the original Bottom-up 
approach. 
 
The original Bottom-up and NN-basic algorithms show similar performance across the evaluated 
metrics. In contrast, the Bottom-up with NN algorithm delivers significant improvements: by 
leveraging the NN for peer pod selection within resource buckets, rather than relying on random 
selection, it achieves resource utilization much closer to that of the Best algorithm, as seen in Figure 
13. 
 
Notably, the Bottom-up with NN approach also yields a marked increase in the satisfaction rate, 
particularly for elastic pods, without compromising the satisfaction of rigid pods. This demonstrates 
the effectiveness of integrating neural network-based decision-making into the Bottom-up 
framework for adaptive and efficient resource allocation. 
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Figure 13: Performance comparison for different algorithms in terms of resource utilization versus arrival rate 
(left), and satisfaction rate versus arrival rate (right) 
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5 Multi-Agent AI Algorithm for 
Decentralized Resource Allocation 

5.1 Introduction 
In the ACES distributed cloud systems, the efficient allocation of workloads across computing nodes is 
a fundamental requirement to ensure responsiveness, resource utilization, and service quality. To 
address this need, the swarm-based algorithm (see Section 4.3) has been adopted to perform 
decentralized workload allocation decisions, leveraging local information and interactions among 
agents to achieve global coordination. However, the behaviour and effectiveness of the swarm 
algorithm are governed by a set of hyperparameters that must be carefully calibrated to balance 
exploration, stability, and convergence speed. Manual tuning or heuristic approaches are commonly 
used in practice but are often inadequate in dynamic environments where system conditions and user 
demands vary over time. To overcome these limitations, a machine learning-based mechanism has 
been implemented to enable the automatic calibration of the swarm algorithm’s hyperparameters, 
allowing the system to adapt its behaviour in a data-driven manner during execution. 
 
Given the complexity of the swarm-based algorithm used for workload allocation, its performance 
critically depends on a set of hyperparameters whose optimal values are not analytically known. Thus, 
optimizing the swarm algorithm can be viewed as a black-box global optimization problem, in which 
evaluating the objective function—i.e., assessing the swarm’s performance under specific 
hyperparameter configurations—is computationally expensive and must be performed via simulations 
or experimental testing. Active learning algorithms are particularly suitable for addressing this class of 
problems, as they aim to efficiently find optimal solutions with minimal function evaluations by 
iteratively building surrogate models and intelligently selecting new query points.   
 

5.2  State-of-the-art in black-box optimization 
Among existing approaches, BO [14] represents the state-of-the-art active learning method, 
leveraging probabilistic surrogate models (typically Gaussian Processes) to approximate the unknown 
objective and using acquisition functions that balance exploration and exploitation. Other related 
active learning schemes with similar principles have also been proposed, including methods based on 
radial basis functions or ensemble models [15-17]. However, these methods typically rely solely on 
probabilistic arguments to handle exploration. To enhance this exploration capability deterministically, 
the approach considered here integrates an IDW strategy into the active learning scheme. 
Specifically, the proposed algorithm, named D-GLIS (Distributed Global optimization via Local 
surrogate and Inverse distance weighting Sampling) [16], extends the recently introduced GLIS 
approach by combining radial basis function surrogate models with a deterministic IDW function. The 
IDW term explicitly encourages the exploration of unexplored regions of the feasible space, 
complementing the probabilistic approach typical of BO. 
Moreover, differently from centralized methods such as BO, D-GLIS is inherently decentralized, 
specifically designed for optimization scenarios in distributed multi-agent networks. In D-GLIS, agents 
independently construct and maintain local surrogate models and optimize local acquisition functions 
without sharing their local objectives or surrogates. Cooperation among agents is realized through 
decentralized consensus mechanisms relying only on limited information exchange. This 
decentralized and deterministic exploration structure makes D-GLIS particularly advantageous in 
scenarios characterized by dynamic topologies, limited communication bandwidth, privacy 
constraints, or robustness requirements, common in distributed cloud systems. 
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5.3  Methodology 
5.3.1 Problem Formulation 
Consider a network consisting of NN computational units or agents. The goal is to solve the 
optimization problem: 
𝑥∗ = argmin

#∈%
𝑓(𝑥),  

where 𝑥  ∈ {𝑅}& n and 𝑋  ⊆ {𝑅}& is a known feasible set. The global objective 𝑓(𝑥) is assumed to be 
separable: 
𝑓(𝑥) = Σ'()* 𝑓'(𝑥),                            ,  
where each 𝑓':  {𝑅}& → {𝑅}represents the local cost function evaluated solely by agent 𝑖	. Specifically, it 
is assumed that: 

• Each local cost function 𝑓'(#)          lacks an explicit analytical expression and can only be 
assessed through direct evaluation at points 𝑥  ∈ 𝑋	           , possibly affected by noise. 

• Agents independently evaluate their respective functions 𝑓'(#)          without sharing raw 
evaluation results yet collaborate toward the global objective. 

• Evaluations of 𝑓'(#)          are computationally costly, necessitating optimization methods that 
minimize the number of evaluations. 

• Agents communicate over a fixed, strongly connected, and doubly stochastic weighted graph 
{𝐺}, where nodes represent agents and edges define possible communication links. 
 

5.3.2 Local Surrogate Functions 
Each agent 𝑖	   maintains a local dataset 𝐷' = (𝑥), 𝑦)), (𝑥-, 𝑦-), … , ?𝑥.! , 𝑦.!@, where each observation 
𝑦/approximates the local objective𝑓'?𝑥/@. This dataset remains private to the agent. Each agent 
𝑖	constructs a local surrogate function 𝑓Ausing an RBF approach: 
𝑓0B(𝑥) = Σ1()

.! 𝛽1
(') 𝜙?𝜀𝑑(𝑥, 𝑥1)@,  

where 𝜙(⋅)        denotes an RBF,𝑑(⋅,⋅)          is a chosen distance metric, and 𝜖   a hyperparameter 
controlling the shape of the RBF. The coefficients𝛽1

{(')}          are identified by minimizing a regularized 
least-squares cost: 

Σ1()
.! I𝑦1 − Σ/()

.! 𝛽/
(')𝜙 K𝜀𝑑?𝑥1 , 𝑥/@LM

-
+ 𝛾P𝛽(')P-                                                                                ,  

ensuring numerical stability and convexity. Common RBF choices include inverse quadratic and 
squared exponential kernels. 
Each agent independently constructs a local surrogate 𝑓0(#)Q        , and these local surrogates combine 
to form the global surrogate: 

𝑓A(𝑥) =  Σ{'()}* 𝑓(𝑥)R                                .  

However, as agents do not share surrogates, distributed optimization techniques are required to 
minimize 𝑓A (𝑥)  . 
  

5.3.3 Local Inverse Distance Weighting Functions 
To promote exploration, each agent employs an IDW function, defined as in Figure 14 below: 

 
Figure 14: IDW expression for agent i 

This function ensures higher values for regions less explored by agent 𝑖	. 
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5.3.4 Local Acquisition Functions 
Each agent constructs a local acquisition function 𝑎'(𝑥) balancing exploration and exploitation: 
𝑎'(𝑥) =

45(#)
645

− 𝛿𝑧'(𝑥),  
where Δ𝑓A is the range of the surrogate 𝑓Aand normalizes it, and 𝛿 ∈ (0,1] controls exploration intensity. 
At each iteration, agent ii, selected in a round-robin fashion, solves: 
𝑥',∗ = argmin

#∈% 
𝑎'(𝑥) , 

using distributed optimization. 
 

5.4  Iterative Optimization Process 
Upon selecting 𝑥',∗, agent 𝑖	 evaluates 𝑦'  =  𝑓'(𝑥',∗) + 𝜖, updates its dataset and surrogate, and the 
process repeats with the next agent until reaching a predefined iteration limit. The final global 
solution is obtained through distributed minimization of the global surrogate without the exploration 
term. The overall procedure si summarized in Figure 15 below. 
 

 
Figure 15: Psuedo-code for the D-GLIS algorithm 

 

5.4.1 Distributed Optimization Technique 
Optimization of the local acquisition functions is performed through distributed algorithms since each 
agent lacks direct knowledge of other agents' surrogates. Specifically, the GTAdam algorithm [18] is 
utilized—a distributed variant of the Adam optimization method [19]—integrating gradient tracking for 
consensus-driven convergence. GTAdam relies solely on local computations and neighbor-to-neighbor 
communication, ensuring suitability for decentralized environments. Although convergence guarantees 
are limited by the non-convex nature of the optimization, GTAdam effectively supports cooperative 
minimization tasks within D-GLIS. 
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The GTAdam approach is employed in two key stages of the D-GLIS algorithm: the iterative 
minimization of local acquisition functions (inner loop), and the final global surrogate minimization 
(outer loop). 
 

5.5  Results 
The algorithm has been implemented in Python, and all the codes are available in the ACES GitHub 
repository [20]. The disropt library [21] has been used for the distributed operations. 
The DGLIS algorithm outlined in Section 4 was employed to calibrate the hyperparameters 𝛼  and 𝛽  of 
the swarm-based optimization framework described in Section 3. Both parameters were subject to box 
constraints within the interval [0,5]. A network consisting of 10 agents was simulated, and each 
experiment was replicated over 20 independent MonteCarlo runs. In all the experiments the agents 
communicate over a fixed undirected graph G, generated using an Erdos-Renyi random model (2, p) 
with p = 0.3. The adjaceny matrix of the graph is obtained through a Metropolis-Hastings weight model 
[22]. In every repetition, each agent was initialized with 4 points sampled uniformly at random from the 
feasible domain. The inner solver, GTAdam, was executed for 1000 iterations, and the parameter 𝛿 was 
configured based on a heuristic rule: 𝛿' = 10[max

9"∈:!
𝑦/   −   min9"∈:!

𝑦/]. The Figure 16 reports, at each 

iteration of the DLGIS procedure, the corresponding optimal point 𝑥∗ that would be identified by the 
algorithm in the absence of the IDW term, if the execution were stopped at that specific iteration. In all 
simulations, the regularization parameter 𝜆 was set equal to 0.5. As illustrated by the figure, satisfactory 
configurations of 𝛼 and 𝛽 are consistently identified after approximately 30 iterations. 

 
Figure 16: Performances of D-GLIS on self-hyperparameter calibration: function value vs. number of iterations 
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6 Distributed Data Management 
6.1 Introduction 
 
In ACES, distributed data management play an important role in supporting autonomy, system 
resilience, and the ability to adapt to changing conditions. Since edge-cloud infrastructures involve 
many locations where data is produced and consumed, it’s essential to manage this data in a way that 
supports low-latency operations, high availability, and reliable coordination. Unlike traditional cloud 
setups that often relies on centralised data processing, edge environments are more fragmented and 
usually has limited resources. Data should ideally be processed close to where it originates but still be 
accessible across the system when needed. This raises some challenges around data placement, 
synchronisation, and consistency. 
  
To address these issues, ACES uses a distributed and policy-driven layer for managing data. This layer 
works together with cognitive agents that are capable of reasoning about the system state and taking 
decisions in real time — such as where data should be stored, how it should be accessed, or when it 
needs to move. This chapter gives a conceptual overview of how distributed data management is 
approached in ACES. It outlines general ideas, technologies, and practices, and explains how these are 
used to support intelligent and self-managing behaviour in the system. 
 

6.2  State-of-the-art in Distributed Data Management 
 
Distributed data management is about how data is stored, moved, and accessed across different 
systems. In typical cloud setups, this is usually handled with centralized storage and strong 
consistency. But in edge-cloud environments, conditions are different. Data is often created and used 
locally, where resources are limited and connections may be unstable. The goal is to keep data close 
to where it’s needed while still allowing coordination between parts of the system. Some key principles 
guide this. Data locality reduces delays and saves bandwidth. Replication helps ensure availability if a 
node fails. Full consistency is often too costly at the edge, so systems use eventual consistency 
instead. Partitioning helps to spread data and scale out. Technologies like HDFS [23] and Apache 
Ozone [24] offer scalable storage. Object stores like MinIO [25] are common for flexible data access. 
IPFS [26] and CRDTs support more advanced models like content-addressing or coordination-free 
replication. 
  
Edge systems face unique difficulties. Devices may have very little storage or compute power. 
Networks can be unreliable. Data privacy rules may prevent data from leaving the device. The 
environment is also highly diverse in terms of hardware and software. A common response is to use 
hybrid approaches. These combine local storage with metadata that guides when and how to sync 
data. Metadata catalogs track locations, usage, and policy rules. This allows systems to make decisions 
about moving or deleting data without central coordination. 
  
ACES builds on these ideas. It adds swarm-like cognitive agents that use telemetry and metadata to 
decide where to place workloads and how to manage data. These agents are adaptive and respond to 
system state in real time, which helps move beyond fixed, rule-based models and makes the platform 
more flexible and responsive. 
 

6.3  ACES Data Management Principles 
ACES follows a data-centric approach to support cognitive and autonomous behaviour at the edge. 
The system is designed to make data available for agents where and when it is needed, without relying 
on centralized storage and control. This is achieved through a combination of decentralized storage 
and intelligent data routing. 
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A key feature of ACES is the use of OpenTelemetry [27] to collect telemetry data across the edge-
cloud infrastructure. OpenTelemetry gathers both infrastructure-level metrics – such as CPU, memory, 
disk I/O, and network usage – from Kubernetes nodes, as well as detailed telemetry from user 
workloads. This data is important for understanding system state, guiding workload placement, and 
enabling self-optimizing behaviour. 
 
Core data management principles in ACES: 

• Local-first storage: Data is stored and processed as close as possible to where it is generated. 
This reduces latency and limits unnecessary data transfers. 

• Metadata-driven decisions: Every data object is associated with rich metadata, including its 
origin, type, sensitivity, and usage history. This metadata is used by cognitive agents to make 
informed decisions about data placement and retention. 

• Policy-based control: Data movement and replication follow predefined policies. These 
policies can be based on SLA constraints or user preferences, defined by performance targets 
such as latency, throughput, data retention duration, or energy consumption thresholds, as well 
as regulatory or business-specific compliance requirements. 

• Event-driven processing: ACES supports reactive data flows. For example, a sudden spike in 
CPU usage observed via OpenTelemetry can trigger redistribution of workloads or replication 
of data to prevent overload. 

• Consistency vs. availability trade-off: In many cases, ACES opts for eventual consistency to 
ensure high availability and responsiveness. Synchronization with peer nodes happens 
asynchronously, depending on network conditions and operational priorities. 

  
The collected telemetry data plays a foundational role. It is continuously processed by local agents and 
aggregated into the DKB, which serves as the shared memory of the system. This data helps agents 
evaluate the state of the platform and take autonomous actions, such as offloading data to another site 
or adapting storage configurations. In ACES, data is not passive. It actively shapes the behaviour of 
services. The combination of OpenTelemetry, decentralized data control, and agent-based reasoning 
enables ACES to meet its goals of autonomy, resilience, and performance in edge-cloud environment. 
 

6.4 Standards 
Telemetry collection in ACES uses the OpenTelemetry, ensuring compatibility with industry tools and 
enabling consistent metrics across heterogeneous infrastructure. For data storage and movement, 
ACES explores integration patterns inspired by widely used technologies such as POSIX-compliant file 
systems, object storage APIs (via MinIO), and Kubernetes-native interfaces. Standardization also 
applies to metadata management. The potential use of a global metadata catalogue via Nuvla ensures 
discoverability and traceability while respecting data sovereignty and edge autonomy. 
  
These choices help ACES to remain open, interoperable, and adaptable to various deployment 
scenarios without locking into proprietary protocols and tools. 
 

6.5  Operational Insights into Edge-to-Edge Data 
Management 

The ACES project builds on a growing body of experience from previous edge-cloud initiatives in which 
project partners participated previously, which provide valuable lessons on how to design, deploy, and 
operate distributed data systems across heterogeneous and dynamic edge infrastructures. 
  
In some of the EU and ESA projects, Nuvla/NuvlaEdge platform was used to orchestrate workloads and 
manage data flows across edge sites (for more details see series of technical blog posts in [30]). The 
platform supported real-time analytics and AI workloads on mobile and fixed assets – such as trams, 
warehouses, and roadside units – without relying on centralized cloud storage. Instead, the architecture 
used edge-local processing and peer-to-peer data exchange between sites. 
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One key insight is that maintaining data locality while ensuring global coordination is best achieved by 
separating data payloads from metadata. For example, Nuvla-based deployments used local storage 
for time-sensitive data and a global metadata registry for coordination. This approach allowed edge 
services to operate autonomously, while remaining discoverable and controllable through the central 
management plane (see Figure 17). 
 

 
Figure 17: Data records, objects, and sets represent the metadata catalogue on Nuvla.io. Augmented with 

powerful search, as well as objects and metadata sharing capabilities 
 
In these deployments, data flow patterns were driven by workload requirements, network conditions, 
and device capabilities. For instance, sensor data collected at the edge was pre-processed locally and 
shared laterally with neighbouring nodes. Only essential summaries or decisions were forwarded 
upstream. This model aligns well with ACES goals of autonomy, low latency, and resilience. Typical 
topologies involved multiple edge nodes forming a mesh. Each node could operate independently or 
collaborate with peers, depending on service needs and resource availability. These edge-to-edge 
configurations supported flexible workload placement and adaptive data routing without compromising 
on performance or privacy. 
  
These operational insights demonstrate the feasibility and advantages of decentralized data handling 
in real-world environments. They also show how agent-based orchestration, edge-local processing, 
and metadata-driven coordination forms a practical foundation for cognitive, autopoietic systems like 
ACES. 
 

6.6  Data Management and Storing Implementation 
The ACES project addresses distributed data management as a core enabler of its cognitive edge-
cloud architecture, responding to the increasing complexity and volume of data across highly 
heterogeneous and geographically dispersed environments. Distributed data in ACES is collected from 
a variety of sources, including IoT devices, edge clusters, microservices, and centralized cloud 
environments, and managed through a layered, resilient architecture designed to ensure data 
accessibility, consistency, and semantic integrity. 

Data in this context is categorized into metrics (e.g., CPU load, memory usage), real-time streams (e.g., 
alerts), graph-based relationships, and general object storage. Each data type is handled by distinct 
storage solutions: TimescaleDB [28] for time-series data, Neo4j [29] for graph structures, and MinIO 
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for scalable object storage. The system employs a push-pull telemetry model, combining real-time data 
pushing (for ephemeral or dynamic sources) with polling mechanisms for more persistent services, 
ensuring that no critical insight is lost. 

To support interoperability and data fusion, the ACES Data Model adopts a graph-based representation 
aligned with NGSI-LD, enabling the transformation of raw telemetry into semantically enriched 
knowledge. The system utilizes NATS-based pipelines for decoupling data ingestion and consumption, 
allowing for scalable processing and aggregation. This facilitates seamless integration of telemetry 
streams from distributed sources and allows for flexible aggregation and real-time processing 
workflows. Once processed, data feeds into the CF, where machine learning and swarm intelligence 
models enable proactive orchestration and scheduling decisions, especially in multi-cluster settings. 

One of the distinguishing features of ACES’ approach is the DKBRS, which supports consistency and 
coordination across clusters. This component facilitates synchronized state awareness, enabling 
informed cross-cluster decisions by sharing knowledge artifacts like metrics, alerts, and predictions. 

ACES also tackles data retention and lifecycle management through the use of ETL pipelines 
orchestrated with Prefect. These pipelines offload historical data to long-term storage, maintaining 
system performance while preserving analytical value. Altogether, this distributed data management 
strategy ensures the system’s resilience, agility, and intelligence core to the autopoietic vision of 
adaptive edge-cloud services. 

 

Technology Primary Role Application in ACES Key Strengths 

TimescaleDB Time-series data 
storage 

Stores fine-grained telemetry 
metrics (e.g., CPU, memory 
usage) 

SQL compatibility, 
optimized for time-
series data 

Neo4j Graph-based data 
storage 

Stores relationships among 
pods, nodes, metrics 

Graph modelling, 
semantic querying, 
relationship-aware 

MinIO Object storage (S3-
compatible) 

Long-term archival of old 
metrics via retention pipelines 

Scalable, lightweight, 
S3-compatible 

NATS Real-time messaging 
and stream pipeline 

Decouples telemetry 
producers/consumers, real-
time alerts 

High-throughput, 
fault-tolerant, 
scalable 

Kubernetes Container 
orchestration 

Deploys, scales, and manages 
microservices across clusters 

Automated scaling, 
resilience, CI/CD 
integration 
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Prefect Workflow 
orchestration (ETL 
pipelines) 

Coordinates retention flows 
to MinIO, manages metrics 
offloading 

Python-native, robust 
task scheduling 

CF AI/ML-based 
analytics and 
orchestration 

Consumes data for intelligent 
scheduling via swarm 
intelligence 

Model serving, real-
time decision making 

DKBRS Cross-cluster 
knowledge 
synchronization 

Ensures state consistency 
between distributed clusters 

Federated data 
sharing, consistency 
management 

Prometheus Monitoring and 
metric collection 

Gathers system-level metrics 
(used in pull-push model) 

Widely adopted, 
integrates with 
Kubernetes 

Table 1: Comparative Table of technologies in ACES distributed data management 

 

6.7 Cognitive framework  
With data distributed across the ACES Platform and stored in a variety of technologies-from 
TimescaleDB for time-series data, to Neo4j for graph data, and NATS for real-time messaging, it 
becomes increasingly important to establish a unified entry point for data access. This central gateway 
is essential because most components within ACES rely on timely and consistent data to function 
effectively, whether they are training machine learning models, generating real-time alerts to predict 
critical system behaviour, or executing orchestration tasks. Without a universal access layer, 
integrating and managing these diverse data sources would be complex and inefficient, potentially 
hindering the platform’s ability to deliver reliable and intelligent services.  
Developed by HIRO, the CF serves as the central data orchestration layer for the ACES Platform, 
enabling unified access to distributed resources. As illustrated in Figure 18, the CF acts as the primary 
gateway for all data operations, abstracting the complexity of interacting with heterogeneous storage 
systems (TimescaleDB, Neo4j, NATS, etc.). 
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Figure 18: CF relations 

As it could be observed from Figure 18, the CF is responsible for providing the read/write access for 
the components associated with ML predictions. CF is integrated with Net Detector, ML Tuning 
Algorithm, Attack Detection, Anomaly Detection and TKG relation models. All of them are being 
deployed as separate services. On the other side CF provides data for Resource Management service 
developed by Lake and having scheduler inside. To simplify data access, CF provides a Rest API that 
allows read and write operations for all the available data resources. The full list of requests may be 
observed on Figure 19. 
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Figure 19: CF API 

With data being the first vital component in the ML process of decision making, the second important 
piece of the puzzle are models themselves. Keeping this in mind CF assists the ACES platform in this 
aspect as well. This involves the functionality of providing preconfigured ML models that were designed 
for a particular set of tasks, as well as storing already fine-tuned models developed by partners inside 
the corresponding service of ACES platform. Those models are being stored in CF and could be access 
via API as well. 
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7 Conclusions 
This document has presented a comprehensive overview of the strategies and mechanisms 
developed within the ACES project to address the challenges of distributed knowledge and data 
management in edge-cloud environments. By integrating temporal knowledge graphs, cognitive 
agents, decentralized optimization algorithms, and adaptive data management frameworks, ACES 
enables resilient, autonomous, and scalable edge intelligence. The proposed methods, including self-
organizing scheduling, anomaly detection through ML and GNNs, and decentralized hyperparameter 
optimization, collectively support the realization of autopoietic edge-cloud services. These 
innovations lay a robust foundation for future developments toward fully autonomous, context-aware, 
and self-managing distributed systems. 
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